

功能

在供暖及生活热水系统中，水在加热时体积上升，压力相应升高，膨胀罐用于吸收这部分受热膨胀的体积，稳定系统运行压力。膨胀罐同时也可运用于供水系统的定压。

（E） 0036

产品范围

5557型 储热水箱用焊边式膨胀罐，CE认证
容积（I）：5， 8
555型 供暖，空调，冷热水用焊边式膨胀罐，CE认证 容积（I）：2，5，6，12，18， 24
5558型 供暖用卷边式膨胀罐，CE认证 容积（I）：5，18，10，12，14， 18
556型 供暖用焊边式 膨胀罐，CE认证 容积（I）：35，50，80，105，150，200，250，300，400，500，600
568型 冷热水焊边式膨胀罐，CE认证 容积（I）：60，80，100，200，300， 500

技术及构造特征

型号 \Rightarrow	5557	555	5558	556	568
材质： - 罐体： - 隔膜	碳钢无毒丁基	碳钢无毒丁基	碳钢合成橡胶SBR	碳钢 合成橡胶SBR	碳钢 无毒丁基无毒丁基
性能： - 介质： - 乙二醇最大百分比： - 最大工作压力： - 预充压力： - 最高温度：	$\begin{aligned} & \text { 水 } \\ & 10 \mathrm{bar} \\ & 1.5 \mathrm{bar} \\ & 99^{\circ} \mathrm{C} \end{aligned}$	水 10 bar 1.5 bar $99^{\circ} \mathrm{C}$	水，乙二醇溶液 40\％ 3 bar 1 bar $90^{\circ} \mathrm{C}$	水，乙二醇溶液 40\％ 35 和50 l： 4 bar $80 \otimes 600$ l： 6 bar 35和50 l： 1.5 bar 80®150 l： 2 bar 2008600 l： 2.5 bar	$\begin{gathered} \text { 水 } \\ 10 \mathrm{bar} \\ 1.5 \mathrm{bar} \\ 99^{\circ} \mathrm{C} \end{gathered}$
管道接口	$\begin{gathered} 5!: 3 / 4^{4 " M} \\ 8!: 3 / 4^{4 \prime} M \end{gathered}$	$\begin{array}{r} 21: 1 / 2^{\prime \prime} \mathrm{M} \\ 5 \boxtimes 24 \mathrm{I}: 3 / 4^{\prime \prime} \mathrm{M} \end{array}$	$3 / 4$＇M	$\begin{aligned} & 35 \boxtimes 400 \mathrm{I}: 3 / 4 \mathrm{M} \mathrm{M} \\ & 500 \text { 和 } 600 \mathrm{I}: 1 \mathrm{M} \end{aligned}$	$\begin{array}{r} 60 \boxtimes 100 \mathrm{I}: 1 \mathrm{l} \mathrm{M} \\ 200 \otimes 500 \mathrm{I}: 11 / 2 \mathrm{M} \end{array}$

尺寸图

编 号	升	\mathbf{A}	-	\mathbf{H}
$\mathbf{5 5 5 0 0 2}$	2	$1 / 2^{\prime \prime}$	140	220
$\mathbf{5 5 5 0 0 5 / 5 5 5 7 0 5}$	5	$3 / 4^{\prime \prime}$	160	288
$\mathbf{5 5 5 0 0 8 / 5 5 5 7} 08$	8	$3 / 4^{\prime \prime}$	200	308
$\mathbf{5 5 5 0 1 2}$	12	$3 / \mathbf{4}^{\prime \prime}$	270	292
$\mathbf{5 5 5 0 1 8}$	18	$3 / \mathbf{4}^{\prime \prime}$	270	377
$\mathbf{5 5 5 0 2 4}$	24	$3 / \mathbf{4}^{\prime \prime}$	300	420

编 号	升	\mathbf{A}	\varnothing	\mathbf{H}
$\mathbf{5 5 5 8 0 5}$	5	$3 / 4^{\prime \prime}$	387	85
$\mathbf{5 5 5 8} 08$	8	$3 / 4^{\prime \prime}$	387	104
$\mathbf{5 5 5 8 1 0}$	10	$3 / 4^{\prime \prime}$	387	110
$\mathbf{5 5 5 8 1 2}$	12	$3 / 4^{\prime \prime}$	387	140
$\mathbf{5 5 5 8} 14$	14	$3 / 4^{\prime \prime}$	387	150
$\mathbf{5 5 5 8 1 8}$	18	$3 / 4^{\prime \prime}$	387	200

编 号	升	\mathbf{A}	\mathbf{B}	\varnothing	\mathbf{H}
$\mathbf{5 6 8 0 6 0}$	60	$1^{\prime \prime}$	$1 / 2^{\prime \prime}$	380	860
$\mathbf{5 6 8 0 8 0}$	80	$1^{\prime \prime}$	$1 / 2^{\prime \prime}$	450	830
$\mathbf{5 6 8 1 0 0}$	100	$1^{\prime \prime}$	$1 / 2^{\prime \prime}$	450	910
$\mathbf{5 6 8 2 0 0}$	200	$11 / 2^{\prime \prime}$	$1 / 2^{\prime \prime}$	550	1235
$\mathbf{5 6 8 3 0 0}$	300	$11 / 2^{\prime \prime}$	$1 / 2^{\prime \prime}$	630	1365
$\mathbf{5 6 8 5 0 0}$	500	$11 / 2^{\prime \prime}$	$1 / 2^{\prime \prime}$	750	1560

编 号	升	A	\varnothing	H
$\mathbf{5 5 6 0 3 5}$	35	$3 / 4^{\prime \prime}$	404	408
$\mathbf{5 5 6 0 5 0}$	50	$3 / 4^{\prime \prime}$	407	530

编 号	升	\mathbf{A}	\varnothing	\mathbf{H}
$\mathbf{5 5 6 0 8 0}$	80	$3 / 4^{\prime \prime}$	450	608
$\mathbf{5 5 6 1 0 5}$	105	$3 / 4^{\prime \prime}$	500	665
$\mathbf{5 5 6 1 5 0}$	150	$3 / 4^{\prime \prime}$	500	897
$\mathbf{5 5 6 2 0 0}$	200	$3 / 4^{\prime \prime}$	600	812
$\mathbf{5 5 6 2 5 0}$	250	$3 / 4^{\prime \prime}$	630	957
$\mathbf{5 5 6 3 0 0}$	300	$3 / 4^{\prime \prime}$	630	1105
$\mathbf{5 5 6 4 0 0}$	400	$3 / 4^{\prime \prime}$	630	1450
$\mathbf{5 5 6 5 0 0}$	500	$1^{\prime \prime}$	750	1340
$\mathbf{5 5 6 6 0 0}$	600	$1^{\prime \prime}$	750	1555

工作原理

膨胀罐

分成两部分的密闭式容器；它运用于供暖及空调水密闭系统中吸收加热时彭胀的水量，平衡系统水量及压力。系统冷却时，预充氮气的压力将隔膜推到底部，系统水未进入膨胀罐
压力，加热瞦胀的水量进入膨胀罐（图2）。

定压罐

定压罐的工作原理如下。
压力开关启动增压泵向定压罐注水。当定压罐压力达到设定值时增压泵停止；定压罐此时在最大容积状态（图1）。当用户开始用水时，定压罐开始向系统供水（图2），直到压力低于设定值时增压泵才启动，它起到了水泵开关之间定压供水的作用。

计算方法

供暖系统

供暖系统闭式（隔膜式）膨胀罐的容积选型使用以下公式：

$$
V=\frac{e \times C}{1-\frac{P_{i}}{P_{f}}}
$$

$V=$ 膨胀罐选型容积（I）
$e=$ 水加热膨胀系数，根据系统最高水温和冷系统水温的差值计算。在供暖系统中根据惯例选择0．035这一系数。
$C=$ 系统总水量（I）
$\mathrm{P}_{\mathrm{i}}=$ 绝对起始压力（bar）：由膨胀罐安装位置的系统静压 $+0.3 \mathrm{bar}+$ 大气压力（ 1 bar ）组成。实际上是膨胀罐预充压力＋1 bar。
$P_{f}=$ 绝对最终压力（bar）：由系统动行时最大压力（即安全阀设定压力）＋大气压力（l bar）组成。实际上是安全阀设定压力＋1 bar。

相对水温 $4^{\circ} \mathrm{C}$ 的水加热膨胀系数＂$\left(\rho=10000 \mathrm{~kg} / \mathrm{m}^{3}\right)$

$\mathbf{T}\left({ }^{\circ} \mathrm{C}\right)$	coeff．＂e＂
0	0.00013
10	0.00025
15	0.00085
20	0.00180
25	0.00289
30	0.00425
35	0.00582

$\mathbf{T}\left({ }^{\circ} \mathrm{C}\right)$	coeff．＂e＂
40	0.00782
45	0.00984
50	0.01207
55	0.01447
60	0.01704
65	0.01979
70	0.02269

示例：
计算一个供暖系统所需膨胀罐容积：
C＝系统容水量＝3000 1
Pid＝安装点的静压＝2 bar
$P_{s i c}=$ 安全阀设定压力＝3．5 bar

计算演示

使用上面的公式：
$e=0.035$（按供暖惯用系数）
Pi $=$ Pid $+0.3+$ Patm $=2+0.3+1=3.3 \mathrm{bar}$
Pf $=$ Psic + Patm $=3.5+1=4.5 \mathrm{bar}$
因此：$V=(0.035 \times 3000) /[1-(3.3 / 4.5)]=3931$

所以选择容积为 400 旧的膨胀罐。

速算公式：

将系统总水量乘以以下表格中的系数即能迅速得出膨胀罐容积。系统每升水的所需膨胀罐容积量（以系数 $e=0.035$ 计算）

	系统起始压力 $(\mathrm{bar})^{*}$												
		1.0	1.2	1.4	1.6	1.8	2.0	2.2	2.4	2.6	2.8	3.0	
安	2.25	0.091	0.106	0.134	0.175	0.253		－	－	－			
聞	2.50	0.082	0.094	0.111	0.136	0.175	0.245			－			
谞\|	2.70	0.076	0.086	0.100	0.118	0.144	0.185	0.259		－			
\|原		3.00	0.070	0.078	0.088	0.100	0.117	0.140	0.175	0.233	－		
－	3.50	0.063	0.068	0.075	0.083	0.093	0.105	0.121	0.143	0.175	0.225		
$\stackrel{\square}{\square}$	4.00	0.058	0.063	0.067	0.073	0.080	0.088	0.097	0.109	0.125	0.146	0.175	
	4.50	0.055	0.058	0.062	0.066	0.071	0.077	0.084	0.092	0.101	0.113	0.128	
	5.00	0.052	0.055	0.058	0.062	0.066	0.070	0.075	0.081	0.088	0.095	0.105	
	5.40	0.051	0.053	0.056	0.059	0.062	0.066	0.070	0.075	0.080	0.086	0.093	
	6.00	0.049	0.051	0.053	0.056	0.058	0.061	0.064	0.068	0.072	0.077	0.082	

储水式热水系统

热水系统中闭式（隔膜式）膨胀罐的容积选型使用以下公式：

$$
V=\frac{e \times C_{a}}{1-\frac{P_{\text {in }}}{P_{\text {fin }}}}
$$

$V=$ 膨胀罐选型容积（I）
$e=$ 水加热的膨胀系数。根据储水箱热水温度与注水时冷水温度的差值计算。
$C_{a}=$ 加热的水量（I）
$P_{\text {in }}=$ 绝对起始压力（bar）：由注水时冷水最大压力 + 大气压力（1bar）组成。实际上是冷水压力＋1 bar。
$P_{f i n}=$ 绝对最终压力（bar）：由系统运行时最大压力（即安全阀设定压力）＋大气压力（ 1 bar ）组成。实际上是安全阀设定压力＋1 bar。

示例：
计算一个卫生热水系统中所需膨胀罐容积：
$\mathrm{Ca}=$ 被加热水的容积＝5001
T1＝冷水温度 $=10^{\circ} \mathrm{C}$
$T 2=$ 储热水箱热水温度 $=55^{\circ} \mathrm{C}$
Pes $=$ 冷水进水最大压力 $=3.5 \mathrm{bar}$
Psic $=$ 安全阀设定压力 $=6$ bar

计算演示：
根据水加热膨胀特系数＂e＂表查出
$T 1=10^{\circ} \mathrm{Cel}=0.00025 \quad T 2=55^{\circ} \mathrm{Ce} 2=0.01447$
因此：$e\left(\triangle T=45^{\circ} C\right)=(e 2-e 1)=(0.0144-0.00025)=0.014$

Pin＝Pes＋Patm＝3．5＋1＝4．5 bar
Pfin $=$ Psic＋Patm＝6＋1＝7 bar

运用公式：
$V=(0.014 \times 500) /[1-(4.5 / 7)]=19.61$

所以选择容积为 24 l的膨胀罐。

速算公式

可使用以下速算公式：

$$
V=f \times C a
$$

$" f "$ 是温差 $40^{\circ} \mathrm{C}$ 到 $50^{\circ} \mathrm{C}$ ，在相应的进水压力和安全阀设定压力下的速算系数，图表如下：

安	系统起始压力（bar）＊									
		2	2.5	3	3.5	4	4.5	5	5.5	6
	4	0.035	0.047	0.070	0.140	－	－	－		－
閘	5	0.028	0.034	0.042	0.056	0.084	0.168	－	－	－
定	6	0.025	0.028	0.033	0.039	0.049	0.065	0.098	0.196	－
另	7	0.022	0.025	0.028	0.032	0.037	0.045	0.056	0.075	0.112
－	8	0.021	0.023	0.025	0.028	0.032	0.036	0.042	0.050	0.063
$\stackrel{*}{*}$	9	0.020	0.022	0.023	0.025	0.028	0.031	0.035	0.040	0.047
	10	0.019	0.021	0.022	0.024	0.026	0.028	0.031	0.034	0.039

＊相对压力

隔膜式定压罐

隔膜式定压罐的选型计算方式如下：

$$
v=6 \times \frac{G_{p r} \times 60}{a} \times \frac{P_{\max }+1}{P_{\max }-P_{\min }}
$$

其中：
$V=$ 定压罐容积（I）
$\mathrm{G}_{\mathrm{pr}}=$ 设计流量（ I / s ）
$P_{\text {min }}=$ 最低增压压力 $(b a r)$ ，即压力开关最低压力开启值。
$P_{\max }=$ 最高增压压力（bar），即压力开关最高压力关闭值。
a＝每小时水泵最多开启次数。
$a=30$ ：＜3 kW功率的水泵
$a=25: 3-5 \mathrm{~kW}$ 功率的水泉
$a=20: 5-7 \mathrm{~kW}$ 功率的水泵
$a=15$ ：7－10 kw功率的水泵
$a=10$ ：$>10 \mathrm{~kW}$ 功率的水泵
示例：
计算一个供水系统定压罐容积：
$G_{p r}=3.41 / \mathrm{s}$
$P_{\text {min }}=5 \mathrm{bar}$
$P_{\text {max }}=6$ bar
水泉功率 $=1.5 \mathrm{~kW}$

$$
V=6 \times \frac{3.4 \times 60}{30} \times \frac{6+1}{6-5}=285.6
$$

计算演示：
$V=[6 \times(3.4 \times 60)] / 30 \times[(6+1) /(6-5)]=285.61$
因此选择容积为 300 的定压罐。

性 能 概 述

5557型

焊边式膨胀罐，储热热水系统适用。CE认证。接口口径3／4＂M 。碳钢罐体。无毒丁基隔膜，符合饮用水标准。最大工作压力 10 bar。预充压力 1.5 bar。最高水温 $99^{\circ} \mathrm{C}$ 。容积5，8升。

555型

焊边式膨胀罐，供暖，空调及热水系统适用。CE认证。接口口径3／4＂M（2升接口 $1 / 2$＂）。碳钢罐体。无毒丁基隔膜，符合饮用水标准。最大工作压力 10 bar。预充压力 1.5 bar。最高水温 $99^{\circ} \mathrm{C}$ 。容积 $2-24$ 升。

5558型

卷边式扁平膨胀罐，供暖系统适用。CE认证。接口口径3／4＂M下接口。碳钢罐体。合成橡胶隔膜。最大工作压力 4 bar 。预充压力 1 bar 。最高水温 $90^{\circ} \mathrm{C}$ 。容积5－18 升。乙二醇最大百分比 40% 。

556型

焊边式膨胀罐，供暖系统适用。CE认证。接口口径3／4＂M（35－400升）， 1 ＂M（500－600升）。碳钢罐体。无毒丁基隔膜，最大工作压力 $4 \operatorname{bar}\left(35-50\right.$ 升）， $6 \operatorname{bar}\left(80-600\right.$ 升）。预充压力 $1.5-2.5 \mathrm{bar}$ 。最高水温 $99^{\circ} \mathrm{C}$ 。容积 $35-600$ 升。乙二醇最大百分比 40% 。

568型

焊边式膨胀罐，冷热水系统适用。CE认证。接口口径1＂M（60－100升），1 1／2＂M（200－500升）。碳钢罐体。可更换式丁基隔膜囊，符合饮用水标准。最大工作压力 10 bar 。预充压力 1.5 bar 。最高水温 $99^{\circ} \mathrm{C}$ 。容积 $60-500$ 升。

