意大利卡莱菲

流量平衡阀

130 型

功能

静态流量平衡阀运用于水力系统,它精确地平衡系统每个支路或者每个末端的流量。

循环系统的平衡是保证系统按设计工况正确运行的前提,只有在此前提下系统才能提供最大的热舒适度、 最大限度地降低能耗。

螺纹连接型的平衡阀阀体内部采用文氏流量计, 使流量调节更精确、流量检测更方便。

产品范围

130型 文氏流量计型平衡阀配套保温壳

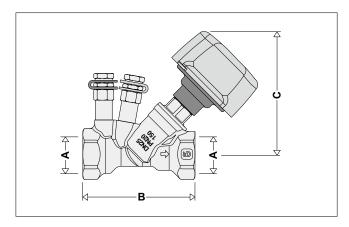
□ 型号	130螺纹连接型	130法兰连接型
材质 - 阀体: - 阀盖: - 阀括: - 阀杆: - 阀形塞: - 阀座密封: - 水力塞型图: - 活塞型图: - 手柄: - 压力检测口:	UNI EN 12165 CW602N黄铜合金 CR UNI EN 12165 CW511L黄铜合金 CR UNI EN 12164 CW724R黄铜合金 CR 不锈钢(AISI 303) UNI EN 12165 CW602N黄铜合金 CR EPDM PTFE PA6G30 主体为黄铜合金,密封为EPDM	铸铁UNI EN-GJL-250 铸铁 UNI EN-GJL-250 黄铜 UNI EN 12164 CW614N PPS 铸铁UNI EN-GJL-250 EPDM EPDM - DN 65-80-100-200-250-300: PA - DN 125和DN 150: 铸钢 主体为黄铜合金, 密封为EPDM
特征 - 介质: - 乙二醇最大百分比: - 最大工作压力: - 工作水温范围: - 精确度: - 手柄圈数:	水、67/548/CE标准指定范 围以外的无危险性乙二醇 50% 16 bar -20~120℃ ±10% 5	水、67/548/CE标准指定范 围以外的无危险性乙二醇 50% 16 bar -10~140℃ -10~120℃ (DN200 - DN250 - DN300) ±10% DN 65: 6 ; DN 80和DN100: 7 ; DN 125: 12 ; DN150: 14 ; DN 200、250、300: 10
口径 - 接口 - 压力检测孔接口	1/2 "- 2 "内螺 (ISO 228-1) 1/4 " 内螺 (ISO 228-1)	DN 65、80、100、125、150、200、250、300; PN 16 - EN 1092 - 2 1/4 " 内螺 (ISO 228-1)

保温壳的构造特征

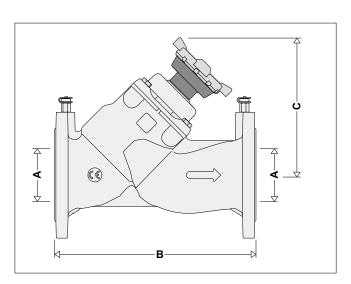
材质

材质: PE-X 密封发泡

厚度: 15 mm 密度: - 内部: 30 kg/m³


- 外部: 80 kg/m³

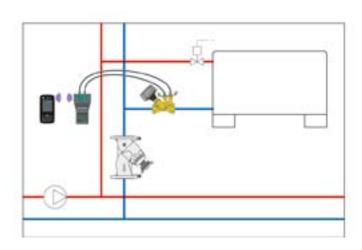
导热系数 (ISO2581): - 0°C: 0.038 W/(m•K)


- 40°C: 0.045 W/(m•K)

湿阻因子 (DIN52615): >1,300 工作温度范围: 0~100℃ 防火等级 (DIN4102): B2 级

尺寸图

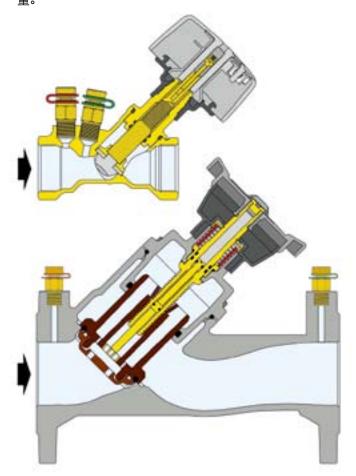
编号	DN	Α	В	С	重量 (k g)
130 400	15	1/2"	77	104	0.57
130 500	20	3/4"	82	104	0.61
130 600	25	1"	97	107	0.75
130 700	32	1 1/4"	115	114	1.05
130 800	40	1 1/2"	129	120	1.27
130 900	50	2"	152	132	1.85



编号	Α	В	С	重量 (k g)
130 060	DN 65	290	225	13
130 080	DN 80	310	235	15.5
130 100	DN 100	350	245	21
130 120	DN 125	400	350	32
130 150	DN 150	480	380	45
130 200	DN 200	600	480	115
130 250	DN 250	730	525	160
130 300	DN 300	850	535	210

系统平衡的优点

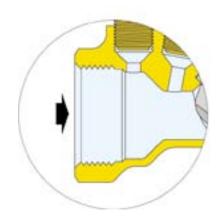
经过流量平衡的系统其主要优点如下:


- 1. 系统的末端在供暖、制冷及除湿状态下正常工作,不会造成能源浪费,舒适度得到保证。
- 2. 水泵在最佳效率区域工作, 减少过热及损耗。
- 3. 避免系统流速过高造成的噪音和管道腐蚀。
- 4. 保证温度调节阀在其正常范围内工作。

工作原理

流量平衡阀用于调节经过其阀体内部的介质流量。

通过转动调节阀手柄,平衡阀的阀杆上下运动,调节流量通径,改变流量曲线特征。平衡阀阀体上配备的压力检测口用于测量压差,根据压差值可以检测和调节流量。



130 型 螺纹连接型

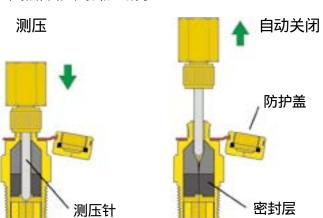
特殊构造

文氏流量计

130 型流量平衡阀 (1/2" - 2") 具备文氏流量检测元件。阀门上游活塞前增加了一段文氏流量通径,通过上面的压差检测口可以测出流量。如下图所示:

这种方式有以下优点:

1. 保证流量的检测和调节更加精确

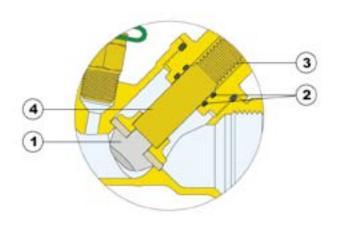

一般的流量平衡阀在调节活塞的上下游各有一个压力检测口。当阀门开度在50%以下时,阀门活塞下游形成的湍流会造成压力波动,导致检测结果不准确,这对于中小口径的平衡阀(1/2"-2")的影响尤为明显。

2. 安装平衡阀时,下游不再需要很长的水平管道。

- 3. 采用文氏通径的设计后, 平衡及检测流量都更为 迅速方便: 因为流量的检测只需参考活塞上游固定的文 氏通径其上下游的压差, 而传统的活塞前后压差检测型 平衡阀不仅需要检测压差, 还需要输入手柄转数方能读 出流量。
- 4. 它使经过阀门的水流更安静, 此特征非常重要。因为风机盘管系统中平衡阀常安装在末端附近, 也就是居室环境内。

速接式测压口

平衡阀的压力检测口为速接式,100型测压针插入接口方便,能迅速检测流量。测压针抽出后,测压孔内的密封层自动密封,防止漏水。



防腐蚀材料

130 型平衡阀使用防脱锌铜合金,这种特殊的腐蚀材料保证平衡阀长期的良好性能。

不锈钢活塞

阀门活塞(1)的材质采用不锈钢。它的防腐蚀性强,同时还能避免水流高速经过摩擦产生变形。

内部双 O 型圈

双〇型水力密封圈(2)避免水流进入到螺杆部分(3)。 这样, 阀杆(4) 能顺利地上下运动便于更精确调节活塞(1) 的设定位置。保持阀杆与阀滑动部分体的水流分离才能 保证正确的流量调节和手柄操作。

保温

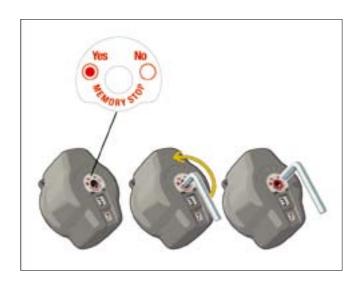
尼龙搭扣式热压预制保温壳适用于螺纹型平衡阀。 它能够完全地隔热以及防止在制冷状态下水汽粘附在阀 门表面上形成冷凝。

调节手柄

平衡阀的调节手柄根据人体工程学设计,保证操作人员最大的舒适感,以及调节的精确性。

- 调节手柄有 5 个全行程转数可以保证水路系统精确得平衡。
- 测微显示器直观清晰, 利于流量的精细调节。
- 手柄为加固性聚合物,具有很高的韧性和防腐蚀性。

调节刻度显示


转动手柄 360° 即是一个调节刻度,调节刻度从0(全关)到 6(全开)。手柄上面的测微刻度(黑色)为十进位,能在同一个调节刻度下更为精细地调节流量。

记忆锁/铅封

平衡阀具备调节刻度的记忆锁定功能。当平衡阀出于某种原因完全关闭后,可以在打开时轻易回到原来的调节位置。

用一个25 mm内六角扳手反时针旋转(勿用力过猛), 直到红色指示器出现在手柄上并与表面平行。

平衡阀的调节作用

平衡阀的调节及使用建立在流体力学有关压力损失、流量及活塞调节位置相互关系的基础上。

预调节

在已知设计流量 G 及平衡阀此流量下相应压力损失值 Δp 后,可以通过以下两种方式来得到平衡阀手柄需要调节的刻度值(预调节值)。

- 1. 通过平衡阀的流量 压损图直接查出刻度数
- 2. 通过数学计算, 得出 Kv 值:

$$Kv = \frac{G}{\sqrt{\Delta p}}$$
 (公式 1.1) 其中:

G =设计流量 m^3/h $\Delta p =$ 压力损失 bar (1 bar = 100 kpa= 10,000 mm 水柱) kv =阀前后压损 1 bar 时的流量 m^3/h

得出 kv 值后与平衡阀的各刻度 kv 值比较, 选择最接近的 kv 值刻度。

建议在平衡阀选型时,选择平衡调节刻度居中的,这样在细调节时上下均有富余量。

流量检测

通过平衡阀的两个文氏流量测压口测量压差(可以使用压差仪或者卡莱菲公司配套的流量检测仪表)。从文氏流量曲线图上即可以查出相应流量,或者根据以下公式计算:

G = kv 文氏计 $x\sqrt{\Delta_{D}}$ 文氏计 (公式 1.2)

注: 文氏流量曲线图与平衡阀的流量预调节曲线图不相同, 前者是指活塞之前的文氏通径的流量特征, 后者则是包含文氏通径及活塞的整个阀门的流量特征。

手动平衡流量

当需要平衡系统流量时,调节平衡阀手柄,直到其压差与文氏流量曲线图上设计流量对应的压差值 相符。

$$\Delta p$$
 文氏计 = $\frac{G^2}{\text{Kv} χ 氏 ; 1.3}$

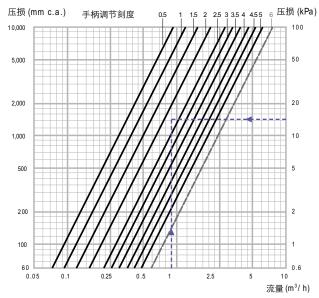
当 Δp 文氏计计算出来后,调节手柄直到压差仪表显示的压差数据与计算数据相符。

注: 文氏流量曲线图与平衡阀的流量预调节曲线图不相同, 前者是指活塞之前的文氏通径的流量特征, 后者则是包含文氏通径及活塞的整个阀门的流量特征。

不同密度液体的纠正系数

对于使用粘度 1-3°E 的液体(如水和乙二醇溶液)的系统,可以使用以下纠正系数:

以水在 20℃时的比重为标准比重 (1=1 kg/dm³), 其它比重的液体其压差值使用以下修正公式:


 $\Delta p' = \Delta p / p'$ 其中: $\Delta p' =$ 修正后的压差值

Δp = 实测压差值

p = 液体实际比重 kg/dm³

将 Δp' 值作为参考压差值进行预调节或流量检测。

编号 130600 1" 平衡阀流量曲线图

DN 25					手柄调	节刻度	复				Kvs
口径1"	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5	6
Kv (m³/ h)	0.93	1.19	1.52	2.07	2.60	3.30	3.88	4.61	5.29	6.10	7.63

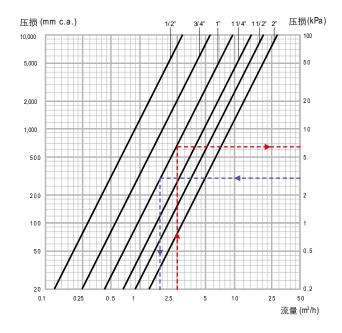
预调节示范

设计流量 G=900 l/h, 需要压力损失为 $\Delta p=14$ kpa, 阀门口径 = 1"。

沿 130600 型的流量曲线图流量 900 l/h 与所需压差 Δp = 14 kpa 交叉, 交叉点调节刻度约为 2.3 (蓝色)。 如果用数学方式计算, 采用公式 1.1, 得出:

 $kv = 0.9 / \sqrt{0.14} = 2.40$

不同密度液体纠正系数示范


液体密度 $\rho' = 1.1 \text{ kg/dm}^3$

实测压损 $\Delta p = 14 \text{ kpa}$

参考压损 Δp' = 14/1.1 = 12.72 kpa

将这个数据在图表中与相应流量查找,或者代入公式 1.1 计算得出新的刻度约为 2.5。

文氏流量曲线图

DN	15	20	25	32	40	50	
口径	1/2"	3/4"	1"	1 1/4"	1 1/2"	2"	
文氏Kv值(m³/h)	2.80	5.50	9.64	15.20	20.50	28.20	

流量检测示范

比如通过压差检测仪得出的 l" 平衡阀压力损失数据为 Δp 文氏计 = 3 kpa, 查看文氏测量曲线图, 沿压损 = 3 kpa 与 l" 曲线相交叉点往下(蓝色线条), 得出流量 = l.7 m³/h。

如果想通过公式进行数学计算, 采用公式 1.2, 131600 型平衡阀的文氏通径 kv=11.96, 计算出流量 $G=9.64 \times \sqrt{0.03}=1.67 \, \text{m}^3/\text{h}$

不同密度液体的修正系数示范

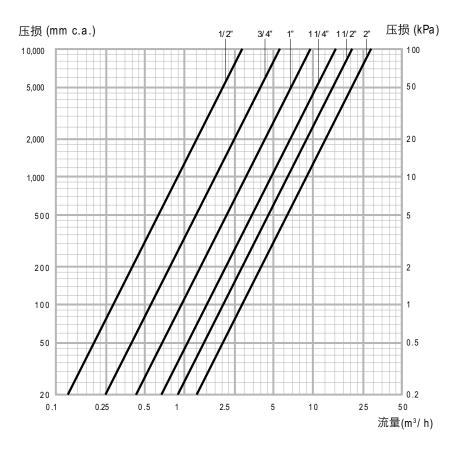
液体密度 $\rho' = 1.1 \text{ kg/dm}^3$ 实测压损 Δp 文氏计 = 3 kpa

参考压损 Δp' 文氏计 = 3/1.1 = 2.72 kpa

将这个参考压损值代入公式 1.2 或通过如表查阅得 出流量 G = 1.59 m³/h

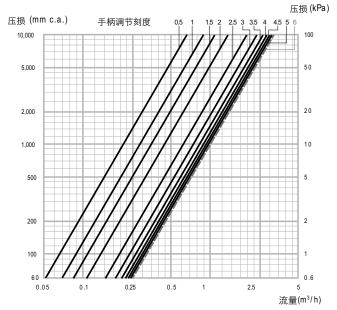
手动平衡流量示范

将 1" 口径的平衡阀流量调节为 2500 l/h。将平衡阀手柄全开(即刻度为 5),然后缓慢地关闭阀门,读取压差仪表上的文氏流量计压差值,当压差值到达 6.7 kpa时(如流量曲线图红色线条所示),这时流经平衡阀的流量为 2500 l/h。

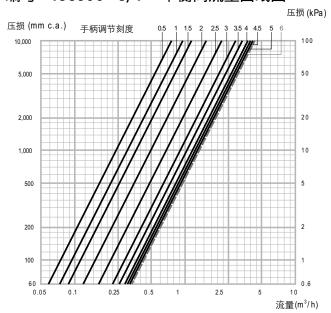

或者运用公式 1.3, Δp 文氏计 = $2.5^2/9.64^2$ = 6.72 kpa, 调节手柄到压差仪表显示为 4.3 kpa 时流量则到达设定值。

不同密度液体的修正系数示范

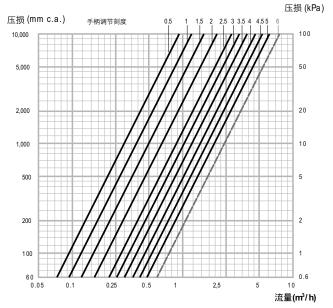
所需液体流量 G = 2500 l/h 通过公式 1.3 计算得出参考压力损失: $\Delta p' = 2.5^2/9.64^2 = 6.72 \text{ kpa}$


如果此液体密度为 $\rho' = 1.1 \text{ kg/dm}^3$,那么在仪表上应该阅读的调节压差值 Δp 文氏计 = $\rho' \times \Delta p' = 1.1 \times 6.72 = 7.39 \text{ kpa}$ 。

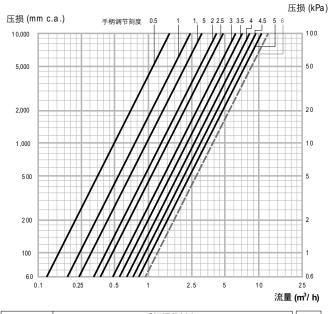
文氏流量曲线图


DN	15	20	25	32	40	50
口径	1/2"	3/4"	1"	1 1/4"	1 1/2"	2"
文氏Kv值 (m³/h)	2.80	5.50	9.64	15.20	20.50	28.20

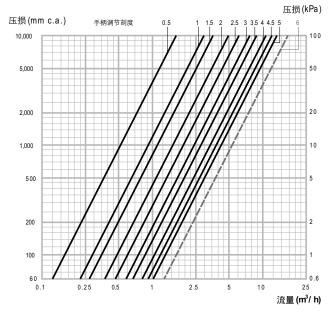
编号 130400 1/2" 平衡阀流量曲线图


DN 15					手柄	调节刻	度				Kvs
口径 1/2"	0.5	.5 1 1.5 2 2.5 3 3.5 4 4.5 5							6		
Kv (m³/h)	0.66	0.89	1.07	1.37	1.96	2.33	2.60	2.79	2.95	3.06	3.17

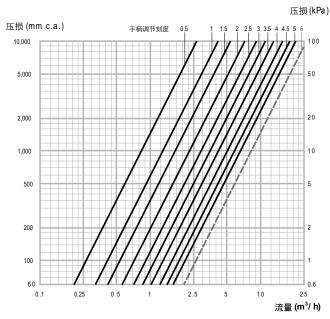
编号 130500 3/4" 平衡阀流量曲线图


DN 20					手柄	凋节刻	度				Kvs
口径 3/ 4"	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5	6
Kv (m³/ h)	0.73	0.95	1.14	1.57	2.18	2.78	3.31	3.73	3.95	4.15	4.46

编号 130600 1" 平衡阀流量曲线图


DN 25				手札	丙调节	刻度					Kvs
口径 1"	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5	6
Kv (m³/ h)	0.93	1.19	1.52	2.07	2.60	3.30	3.88	4.61	5.29	6.10	7.63

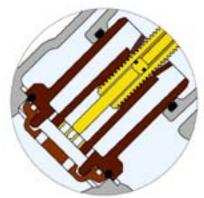
编号 130700 1 1/4" 平衡阀流量曲线图


DN 32				=	手柄调:	节刻度					Kvs
口径11/4"	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5	6
Kv (m³/ h)	1.52	2.47	3.18	4 .22	4.91	6.23	7.15	8.28	9.16	10.37	12.10

编号 130800 11/2" 平衡阀流量曲线图

DN 40			手柄调节刻度										
口径 1 1/2"	0.5	.5 1 1.5 2 2.5 3 3.5 4 4.5 5								6			
Kv (m³/ h)	1.63	2.79	3.50	4.95	5.97	7.50	8.58	10.58	11.77	13.78	17.00		

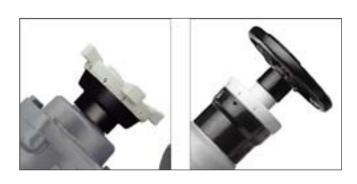
编号 130900 2" 平衡阀流量曲线图


DN 50				手	柄调节	刻度					Kvs
口径 2"	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5	6
Kv (m³/h)	2.66	4.18	5.32	7.28	9.20	11.30	13.20	15.90	18.20	21.10	26.30

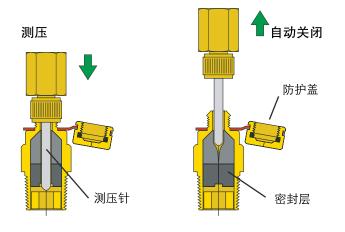
130 法兰连接型

特殊构造

工程塑料活塞


这类阀门的活塞为工程塑料, 其耐水流腐蚀的韧性 强。

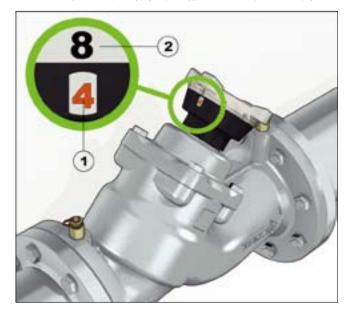
调节手柄


平衡阀的调节手柄根据人体工程学设计,保证操作人员最大的舒适感,以及调节的精确性。

- 调节手柄有多个全行程转数可以保证水路系统精确的平衡。
 - 测微显示器直观清晰, 利于流量的精细调节。
- DN65 型到 DN100 型的手柄是防腐蚀高韧性聚合物, DN125 型和 DN150 型的手轮则是锻钢的, 在中大型系统内调节方式更为方便。

速接式测压口

平衡阀的压力检测口为速接式,100型测压针插入接口方便,能迅速检测流量,测压针抽出后,测压孔内的密封层自动密封,防止漏水。

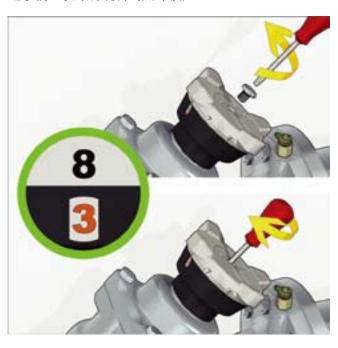

调节刻度显示

两个刻度指示调节的位置:

- 行程指示器(1)具有一个调节刻度,从0度(全关)到全开(6、7、10、12、14根据阀门大小不一),刻度数字为红色。

手柄转动 360 度即为一个调节刻度。

- 测微调节刻度(2)为黑色数字,从0到9。 每一个微度等于行程指示器(1)1/10的开关调节。



记忆锁

平衡阀具备调节刻度的记忆锁定功能。当平衡阀出于某种原因完全关闭后,可以在打开时轻易调回到原来的调节位置。

记忆锁螺栓的操作简单,不需要使用特殊工具。

用一字改锥先把外面的螺钉拧出来,然后将改锥伸进手柄里及顺针旋转到底即锁定。

DN200 ~ DN300 型记忆锁的内部螺钉 (6 mm 六角型) 在手轮中间的保护盖下。

平衡阀的使用及调节方法

平衡阀的运用基于实测阀门前后压差、流量及活塞位置之间的流体动力关系。

预调节

在已知设计流量 G 下, 根据阀门应提供的压力损失 Δp 可以通过平衡阀流量曲线图得出平衡阀需要调节的刻度, 或者通过以下公式计算:

$$Kv = \frac{G}{\sqrt{\Delta p}}$$
(公式1.1) 其中: $G =$ 设计流量 m^3/h $\Delta p =$ 压力损失 bar (1 $bar = 100 \ kpa$ $= 10,000 \ mm$ 水柱) $Kv =$ 阀前后压损1 bar

时的流量m³/h

将计算出的 kv 值与阀门相应口径不同刻度下的 kv 值比较, 选择最为接近的刻度。

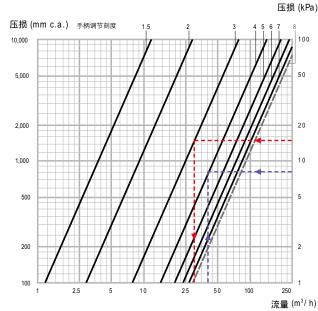
建议选择阀门时其平衡刻度居中,这样对于上下调节都有富余量。

检测流量

在平衡阀某个刻度位置上,测量其前后压差,可以得出流经平衡阀的流量,流量可通过图表、电子仪表或公式计算得出:

$$G = Kv \times \sqrt{\Delta p}$$
 (公式1.2)

不同密度液体的修正系数


对于使用粘度 1-3°E 的液体(如水和乙二醇溶液)的系统,可以使用以下纠正系数:

以水在 20℃时的比重为标准比重 (= 1 kg/dm³), 其它比重的液体其压差值使用以下修正公式:

$$\Delta p' = \Delta p/\rho'$$
 其中: $\Delta p' = %$ 医后的压差值
$$\Delta p = %$$
 实测压差值
$$\rho = %$$
 存实际比重 kg/dm^3

将Δp' 值作为参考压差值进行预调节或流量检测。

编号 135100 DN 100 直型 平衡阀流量曲线图

			手村	丙调节刻	度			Kvs
DN 100	1.5	2	3	4	5	6	7	8
Kv (m³/ h)	12	29	78	142	195	234	265	296

预调节示范

已知 $G = 40 \text{ m}^3/\text{h}$ 流量下应提供压损 $\Delta p = 8 \text{ kpa}$ 。 根据 135100 DN 直型平衡阀流量曲线图, 沿流量和压降的坐标交叉 (蓝色线条) 得出刻度约为 4。

或者根据公式(1.1)得出:

$$kv = 40 / \sqrt{0.08} = 141.84$$

最接近 141.84 的 kv 值是刻度 4 的 kv 值 142, 所以 选择刻度 4。

不同密度液体修正系数示范

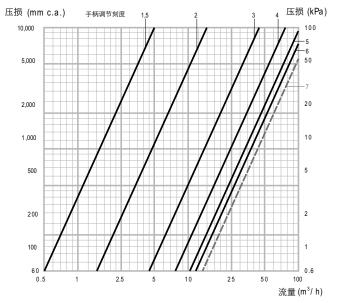
液体密度 $\rho'=1.1 \text{ kg/dm}^3$ 实测压损 Δp 文氏计 = 8 kpa 参考压损 $\Delta p'$ 文氏计 = 8/1.1 = 7.27 kpa 将此数据带入公式 1.1 或通过如表查阅得出流量 $G=4.2 \text{ m}^3/h$ 。

检测流量示范

130100 DN100 平衡阀其刻度在 3 时 (对应的 Kv 值 = 78, 如左侧图表所示, 如果测出压损为 Δp = 15 kpα。 从左侧图表直观得出流量 G 约为 30 m³/h (红线)。 或者通过公式计算得出:

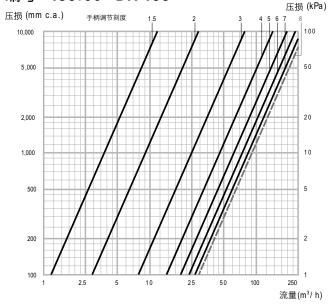
$$G = 78 \times \sqrt{0.5} \approx 30 \text{ m}^3/\text{h}$$

不同密度液体修正系数示范

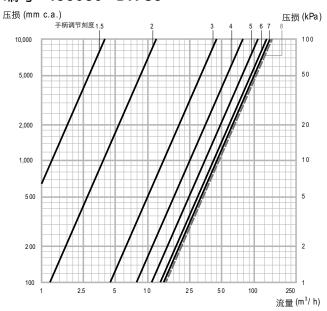

液体密度 $ρ' = 1.1 \text{ kg/dm}^3$

实测压损 $\Delta p = 15 \text{ kpa}$

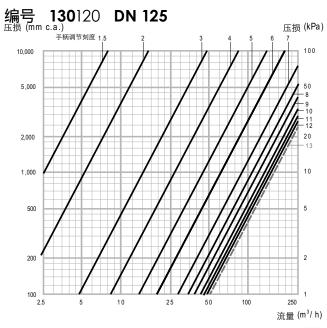
参考压损 Δp' = 15 / 1.1 = 13.63 kpa


将此数据带入公式 1.2 得出流量 $G \approx 28.7 \,\text{m}^3/\text{h}$ 。

编号 130060 DN 65


			手柄调	节刻度			Kvs
DN 65	1,5	2	3	4	5	6	7
Kv (m³/ h)	5	15	45	79	1 03	118	1 29

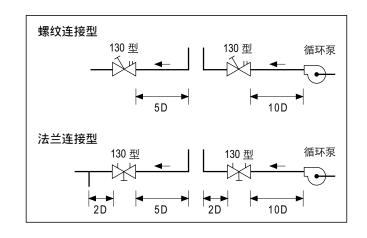
编号 130100 DN 100


		手柄调节刻度 1.5 2 3 4 5 6 7											
DN 100	1.5	2	3	4	5	6	7	8					
Kv (m³/ h)	12	29	78	142	195	234	265	296					

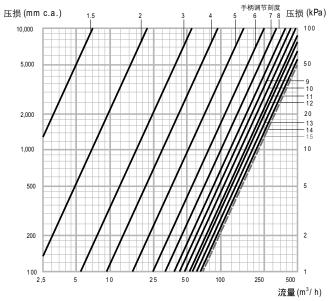
编号 130080 DN 80

		手柄调节刻度										
DN 80	1,5	1,5 2 3 4 5 6 7										
Kv (m³/ h)	4	12	45	79	107	127	140	148				

130120 DN 125

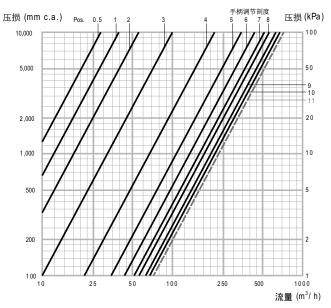

		手柄调节刻度											
DN 125	1.5	2	3	4	5	6	7	8	9	10	11	12	13
Kv (m³/ h)	8	16	48	84	144	197	270	346	389	436	454	482	509

安装方式

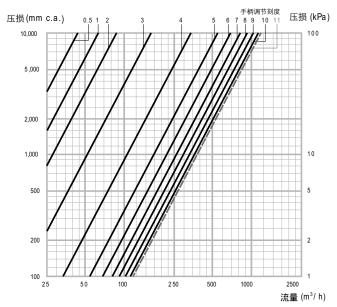

平衡阀需要安装在便于手动调节,检测压差/流量, 泄水的位置。平衡阀可以水平或垂直安装。为了使平衡流 量更为精确,在平衡阀的上下游端均需安装一段直管,其 长度尺寸见右图。平衡阀需遵循阀体箭头指示的水流方 向安装。

平衡阀的选型

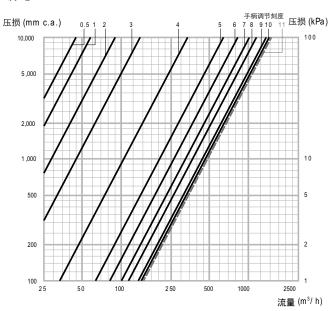
有关平衡阀的选型计算可以参考卡莱菲第二期水力 杂志。



编号 130150 DN 150


						手柄	调节	刻度	Ę						Kvs
DN 150	1.5	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Kv (m³/ h)	7	22	53	93	160	250	322	390	435	482	517	556	606	651	699

编号 130200 DN 200


		手柄调节刻度											
DN 200	0.5	1	2	3	4	5	6	7	8	9	10	11	
Kv (m³/ h)	28	39	55	100	216	341	430	508	561	619	667	710	

编号 130250 DN 250

		手柄调节刻度											
DN 250	0.5	1	2	3	4	5	6	7	8	9	10	11	
Kv (m³/ h)	44	62	87	164	345	543	694	824	925	1022	1110	1188	

编号 130300 DN 300

		手柄调节刻度											Kvs
	DN 300	0,5	1	2	3	4	5	6	7	8	9	10	11
I	Kv (m³/ h)	45	57	90	141	332	634	825	1018	1170	1285	1394	1504

配件

100010型

测压速接针管一对 接口尺寸: 1/4" 内螺接头

耐压: 10 bar 耐温: 110℃

配件

产品范围

130006型 配有遥控器的流量和压差电子检测仪 130005型 配有安卓系统的流量和压差电子检测仪

130 型流量及压差电子检测仪表

检测仪表用于检测循环系统流量。

整套设备包括一个检测压差传感器和一个包含 Caleffi Balance 程序的(终端)调解设备。操作终端已 在全套设备中提供,但用户也可以连接配有安卓系统的 其它设备来代替。

电子检测仪表可以检测流量及压差,数据通过蓝牙连接传输。

可以测试 130、131、和 135 型静态平衡阀和 683 型文氏流量检测管。

可以测试动态流量的压差。

程序也包含了市场上在售的大部分平衡阀的数据。

技术特征

测试范围

压差: 0 - 1,000 kPa 静态压力: <1,000 kPa 工作温度: -30 - 120℃

测量精确度

压差: <0.1% 原尺寸

传感器

电池电量:6,600 mAh工作时间:持续工作 35 小时充电时间:6 小时IP 级别:IP 65

仪器的环境温度

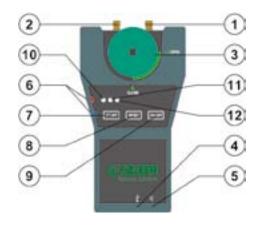
工作和充电时温度: 0 - 40℃ 储存时温度: -20 - 60℃ 周边最大相对湿度: 90%

传感器重量:540 g携带箱总重:2.8 kg

配件名称

- 检测传感仪
- 两个测压 / 测温速接口
- 两个测压孔速接针管
- 配有激活许可证的触屏终端和配件
- 传感器的充电器
- 操作终端的充电器
- 连接电脑和操作终端的数据线
- 激活许可证和 (编号 130005 产品) 下载安卓软件的说明书
- 操作说明书
- 内含操作手册, 平衡测量程序软件, 阀门的浏览器, Report Viewer 和相关程序的 CD
- 校对控制板。传感器需要配合由实验室认证过的特殊校对控制板。

工作原理


操作工人在操作终端的备用清单上选择需要测试的平衡阀 (生产厂商、型号、尺寸,和对应 Kv 值的位置)。阀门的数据和对应的压差是测量流量的基本数据,测量结果会在操作终端的屏幕上显示。如果在提供的数据清单中没有找到对应的平衡阀,测量还是可以通过手动输入阀门的 Kv 值而计算出来。

测量原理

主要的测量方式包括以下三种:

- 1) 在系统内已安装的位置处测试。根据选定的阀门和其在系统中的安装位置,计算出工作状态下所需流量。
 - 2) 固定流量下的测量。根据所需流量计算出所需阀位。
 - 3) 测量压差。屏幕显示由传感器测得的压差值。

压差测试仪的配件名称

- 1. 上游压力测试接口
- 2. 下游压力测试接口
- 3. 旁通调节的控制键
- 4. USB 接口
- 5. 充电接口
- 6. 温度探测针头(可选)
- 7. 蓝牙切断键
- 8. 复位键
- 9. 开 / 关键
- 10. 蓝牙连接显示灯
- 11. 充电显示灯
- 12. 开 / 关显示灯

通过蓝牙连接在操作终端与 Windows Mobile 之间的传输

因为产品中所提供的操作终端包含 Caleffi Balance 软件, 所以所有卡莱菲平衡阀相关的数据和市场上主要

销售的阀门信息都可以在操作终端显示。设备可以根据之前描述的几种测量方式运行,显示及保存计算结果。

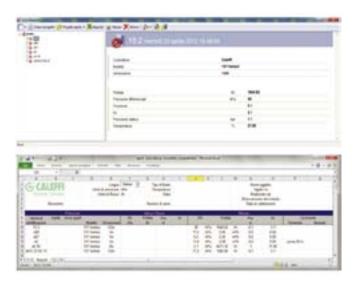
通过蓝牙连接配有安卓系统的智能手机 / 平板 电脑

根据测量方式可以在装有安卓系统的(智能手机/平板电脑)操作终端下载 Caleffi Balance 软件。

其中包括所有卡莱菲平衡阀的数据和市场上主要销售的阀门信息。

设备可以根据之前描述的几种测量方式运行,显示及保存计算结果。

连接电脑

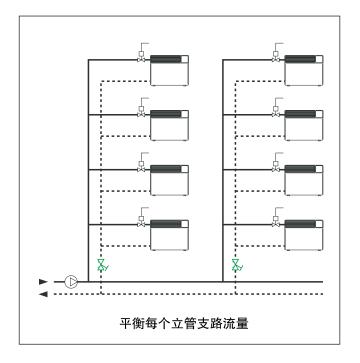

所得出的测量结果和相关阀门数据可以直接在操作 终端的屏幕中保存记录,也可以连接到电脑程序中。

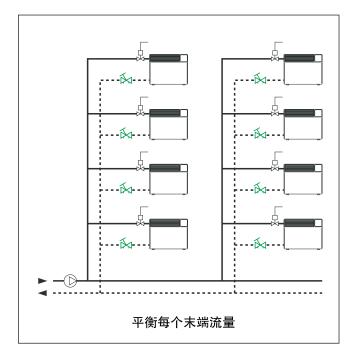
Report Viewer 这款软件, 可以通过产品内提供的

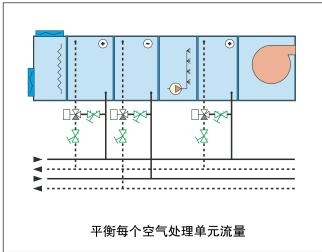
一张 CD-ROM 安装 到电脑; 它可以连接测 量数据并整理成报的 模式。这款软件还可以 在测试之前, 或者在操 作终端输出数据之前 模拟测量结果。

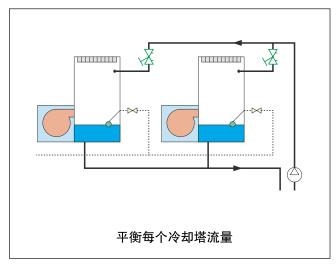
CD-ROM 也提供 Valve Browser (阀门浏览器) 的软件, 在这个程序中可以模拟测试出各种类的阀门相关结果。

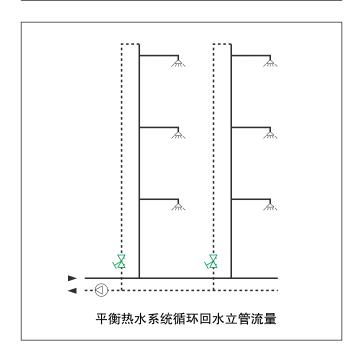
性能概述

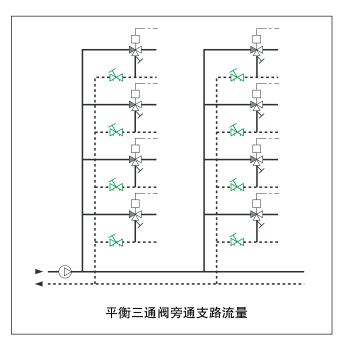

130006型

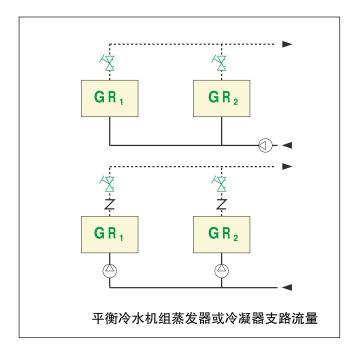

包括蓝牙传送遥控器的流量及压差电子检测仪表。整套测温接口和测压速接针管。压差 0-1,000kPa。静态压力<1,000 kPa。系统温度 -30 - 120℃。

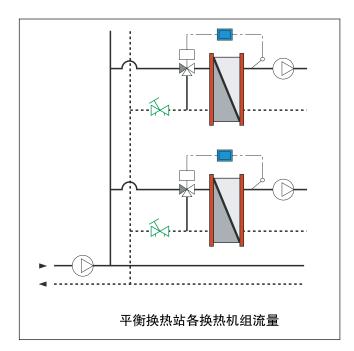

130005型

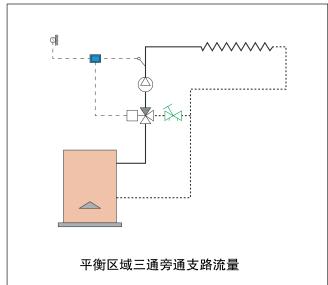

不含遥控器的流量及压差电子检测仪表,包含安卓软件。压差 0 - 1,000 kPa。静态压力 <1.000 kPa。系统温度 -30 - 120℃。

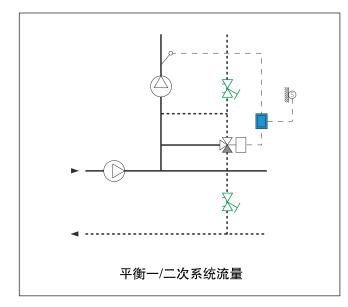

运用图示

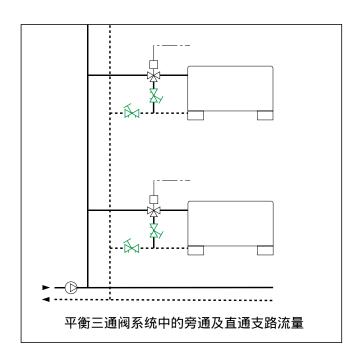












130 型 螺纹连接型

文氏流量计型静态平衡阀。螺纹连接: 1/2"-2" 内螺 (ISO 228-1)。压力检测孔接口: 1/4" 内螺 (ISO 228-1)。阀体、阀杆及阀座为黄铜合金, 活塞为不锈钢。水力密封为 EPDM、手柄为 PA6G30。介质: 水及乙二醇溶液, 乙二醇最大百分比 50%。最大工作压力 16 bar。工作水温范围 -20 - 120℃。精确度 ±10%。手柄带微调刻度, 调节刻度 5 圈, 调节位置记忆及锁定功能。速接式黄铜制的压差检测接口, EPDM 水力密封。

130 型 法兰连接型

静态流量平衡阀。法兰连接: DN65-300。压力检测孔接口: 1/4" 内螺 (ISO 228-1)。阀体及阀盖为铸铁。阀杆为黄铜。活塞为 PPS。水力密封为 EPDM。DN65-80-100-200-250-300 的手柄为 PA, DN125 及 150 手轮为铸刚。介质: 水及乙二醇溶液,乙二醇最大百分比 50%。最大工作压力 16 bar。工作水温范围 -10-140 $^{\circ}$ (DN200-250-300, -10-120 $^{\circ}$)。精确度 $\pm 10\%$ 。手柄带微调刻度,调节刻度 DN65 6 圈 (DN80 及 100 7 圈; DN125 12 圈; DN150 14 圈; DN200-300 10 圈)。调节位置记忆功能。速接式黄铜制的压差检测接口,EPDM 水力密封。

130 型 保温

热压预制保温壳,适用于 130 型螺纹连接式平衡阀。适合于供暖及制冷系统。材质 PE-X 密封发泡。厚度 15 mm,密度:内部 30 kg/m3,外部 80 kg/m³。导热系数(ISO 2581),0℃:0.038 W/(m•K),40℃:0,045 W/(m•K)。湿阻因子(DIN52615)>1,300。工作温度范围:0~100℃。防火等级(DIN4102):B2 级。